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Running title: Practical low-coverage exome sequencing 

 

ABSTRACT 

Today most population genomic studies of non-model organisms either sequence a subset 

of the genome deeply in each individual or sequence pools of unlabeled individuals. With a 

step-by-step workflow, we illustrate how low-coverage whole genome sequencing of 

hundreds of individually barcoded samples is now a practical alternative strategy for 

obtaining genome-wide data on a population scale. We used a highly efficient protocol to 

generate high-quality libraries for ~6.5 USD from each of 876 Atlantic silversides (a teleost 

fish with a genome size ~730Mb) that we sequenced to 1-4x genome coverage. In the 

absence of a reference genome, we developed a bioinformatic pipeline for mapping the 

genomic reads to a de novo assembled reference transcriptome. This provides an ‘in silico’ 

method for exome capture that avoids the complexities and expenses of using wet chemistry 

for target isolation. Using novel tools for analysis of low-coverage data, we extracted 

population allele frequencies, individual genotype likelihoods and polymorphism data for 

2,504,335 SNPs across the exome for the 876 fish. To illustrate the use of the resulting data, 

we present a preliminary analysis of geographic patterns in the exome data and a 

comparison of complete mitochondrial genome sequences for each individual (constructed 

from the low-coverage data) that show population colonization patterns along the US East 

coast. With a total cost per sample of less than 50 USD (including sequencing) and ability to 

prepare 96 libraries in only five hours, our approach adds a viable new option to the 

population genomics toolbox.   
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INTRODUCTION 

DNA sequencing costs have decreased more than 300,000-fold since the turn of the century 

(Wetterstand 2015). Yet, despite the increasing affordability of sequencing data, researchers 

remain faced with decisions about how to distribute sequencing effort between breadth of 

genomic coverage, depth of coverage per individual, and the total number of individuals 

analyzed (Sims et al. 2014). 

Studies focusing on intra-specific genetic variation often need large sample sizes to 

accurately estimate population allele frequencies. This need has spurred the development of 

reduced-representation techniques that focus sequencing on a small fraction of the genome, 

which can then be sequenced to a sufficient depth for reliable genotype calls across many 

individuals. Approaches targeting the sequence flanking restriction cut sites (such as RAD-

seq (Davey et al. 2011)) have become the method of choice for many studies on non-model 

organisms because they provide a relatively cheap and fast way to generate genome-wide 

population genomic data and do not require prior knowledge about the genome sequence, 

enabling important insights in a diversity of systems (e.g. Davey et al. 2011; Narum et al. 

2013; Andrews et al. 2016).  

However, a large proportion of RAD markers are typically located outside protein-coding 

sequence, precluding functional analysis of polymorphism patterns if markers cannot be 

anchored to an annotated reference genome (Jones & Good 2016). For studies focusing on 

selection and adaptation, it may be preferable to target protein-coding or promotor regions of 

the genome (Pespeni et al. 2012; De Wit et al. 2015). RNA-seq (sequencing of expressed 

transcripts (Wang et al. 2009; De Wit et al. 2012)) offers an efficient way to target 

sequencing to protein-coding regions and obtain transcriptome-wide polymorphism data, but 

requires high-quality RNA (De Wit et al. 2012; 2015). A more versatile alternative is targeted 

sequence capture with hybridization probes (Grover et al. 2012; Jones & Good 2016). This 

method requires prior knowledge about the target sequence for probe design, but several 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

effective workflows have been developed for non-model species (e.g. Cosart et al. 2011; Bi 

et al. 2012). The key drawback is the high cost of synthesizing custom capture probes, as 

well as logistics surrounding probe design and laboratory protocols. 

As an alternative to sequencing a subset of the genome deeply enough to reliably call 

individual genotypes, an increasingly popular option is to spread the sequencing over 

greater parts of the genome or across more individuals. Simulation studies have 

demonstrated that sampling many individuals at low read depth provides more precise 

estimates of population parameters than higher read depth for fewer individuals (Fumagalli 

2013; Buerkle & Gompert 2013; Nevado et al. 2014). In fact, these studies have suggested 

that spreading sequencing depth to 1-2 reads per locus and individual (1-2x coverage or 

less) maximizes the information gained about a population. At such low read depth, 

individual genotype calls are highly uncertain, so this sequencing design is not suitable for 

analysis requiring accurate individual genotypes. However, even though most population 

genetic software packages currently require individual genotypes as input, there is no 

inherent need for genotypes to be accurately known for many types of analysis of selection, 

population structure or demographic history. In fact, many commonly used software 

packages simply collapse genotype data into allele counts for populations (Buerkle & 

Gompert 2013). New methods and software packages that estimate population-level 

statistics directly from genotype likelihoods without calling genotypes (and without genotype 

imputation) offer powerful opportunities for taking advantage of the full information contained 

in low-coverage sequence data for more accurate population parameter estimates (e.g. Li 

2011; Nielsen et al. 2011; Buerkle & Gompert 2013; Fumagalli et al. 2014). Such methods 

can also estimate individual-based parameters like admixture coefficients and parentage 

probabilities by combining information across loci to compensate for low coverage at 

individual loci (e.g. Buerkle & Gompert 2013; Fumagalli et al. 2014; Lindtke et al. 2014; 

Korneliussen and Moltke 2015). 
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With decreasing sequencing costs and improved analytical tools, whole genome 

resequencing of population samples is becoming a viable strategy for many studies (e.g. 

Jones et al. 2012; Liu et al. 2014; Xia et al. 2015). Yet so far, most population-level 

resequencing has been conducted on pools of unlabeled individuals (Pool-seq), rather than 

on individually barcoded samples (reviewed by Schlötterer et al. 2014). Undoubtedly, Pool-

seq offers the most cost-effective approach for estimating population allele frequencies 

across the entire genome. Both theoretical and empirical studies have demonstrated that it 

can generate reliable estimates when the number of individuals in a pool and the 

sequencing depth are sufficiently high (Futschik & Schlötterer 2010; Zhu et al. 2012; 

Schlötterer et al. 2014). The obvious downside is that all information about individuals is lost, 

making it difficult to control for uneven contribution to the pool and precluding any individual-

level analysis. Although barcoded sequencing adapters make it possible to multiplex 

hundreds of labeled samples in a sequencing run, Pool-seq has become popular because 

with traditional methods, it would be very labor-intensive and costly to prepare separate 

libraries for hundreds of individuals (the cost could easily exceed the costs of sequencing).  

Here we demonstrate a workflow that overcomes these limitations with a library preparation 

protocol that is sufficiently rapid and inexpensive to allow high-throughput individual sample 

processing, eliminating the need for pooling un-barcoded samples in many studies. The 

library preparation protocol was originally developed for small microbial genomes (<15 Mb; 

Kryazhimskiy et al. 2014; Baym et al. 2015). Our contribution is to demonstrate that it also 

produces high-quality libraries for a teleost fish with a genome size several orders of 

magnitude larger (~730 Mb), and that the library fragment lengths can easily be tuned to suit 

different sequencing applications. With a sequencing depth of only 1-2x per individual, we 

are able to recover the complete mitochondrial genome sequence for each individual and 

obtain individual genotype likelihoods across the nuclear genome.  
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The libraries can be used for whole genome resequencing analysis when a relevant 

reference is available for the species under study. However, even though we can now 

sequence the full genome of any organism, assembling a high-quality reference genome still 

remains a non-trivial, costly, and time-consuming task, especially for highly polymorphic 

species (Voskoboynik et al. 2013; Ellegren 2014). We therefore also demonstrate an ‘in 

silico’ exome capture approach that is a more straight-forward starting point for organisms 

with no prior genomic resources. The idea is to take advantage of our simple sample 

preparation procedure for shotgun whole genome sequencing, but then focus the analysis 

on reads that map to a reference transcriptome, which is easier to assemble de novo than a 

full genome (see also Lamichhaney et al. 2012 for a Pool-seq version of this approach).  

In this paper, we describe our step-by-step workflow (Fig. 1) for using this approach to 

generate exome-wide data for the Atlantic silverside, a small estuarine fish (730Mb 

estimated genome size). With a total of cost of 50 USD per sample (including both library 

preparation and 1x genome sequencing) and the ability to process 96 samples in only five 

hours, our study illustrates that this method will be a viable strategy for obtaining individual-

level genome-wide data for many organisms. 

 

MATERIALS AND METHODS 

Study organism and samples 

Our target species is the Atlantic silverside Menidia menidia, a small estuarine fish with 

almost no prior genomic resources. The most closely related species with fully annotated 

reference genomes in the Ensembl browser are the medaka (Oryzias latipes), the platyfish 

(Xiphophorus maculatus) and the tilapia (Oreochromis niloticus) with estimated genome 

sizes ranging from 730 to 927 Mb (golden path length in Ensembl release 82; Cunningham 

et al. 2015). These species all diverged from the silverside more than 100 million years ago 

(Setiamarga et al. 2009; Near et al. 2012), so are unlikely to be good references for mapping 
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genomic silverside reads, hence the need for a species-specific reference. 

Our target samples had been stored whole in a -20°C freezer for between 8 and 17 years. 

These fish were either collected directly from the wild at one of four different locations along 

the East coast of North America (from Hice et al. 2012) or were generation F1-F11 from a 

selection experiment started with wild-caught parents collected in New York (from Conover 

& Munch 2002). Because RNA was unrecoverable from these archived individuals, we 

collected eight fresh specimens in New York for RNA-seq to generate a reference 

transcriptome. 

 

Generating a reference transcriptome 

To capture a broad diversity of transcripts expressed at different life stages and in different 

tissue types, we prepared cDNA libraries with RNA from 5 whole silverside larvae and 

multiple tissues from 3 adults, sequenced them in one Illumina HiSeq lane with 100 bp 

paired-end reads, and merged de novo assemblies created from the combined read set with 

two different programs (CLC Genomics Workbench (http://www.clcbio.com) and Trinity 

(Haas et al. 2013)). To reduce redundancy in our merged assembly, we meta-assembled 

transcripts based on sequence similarity, and used a sequential reciprocal best-hit-blast 

approach to select a single best representative for each non-redundant protein from related 

fish species with available reference genomes (platyfish, medaka and tilapia). We also 

added transcripts that contained full open reading frames but had low similarity to the 

reciprocal-best-BLAST hit contigs. 

 

DNA extraction and library preparation 

For the genomic analysis, we used the Qiagen DNeasy Blood and Tissue kit to extract DNA 

from muscle tissue. We evaluated the degradation level of each extract through 1.5% 
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agarose gel electrophoresis: only samples that showed clear high molecular weight bands 

and limited smearing were retained for library preparation. To ensure DNA integrity in the 

retained samples, we removed fragments shorter than ~1000 bp from each extract using 

Agencourt AMPure XP beads in a 0.4:1 AMPure to sample ratio, and eluted the DNA in 

10mM Tris-Cl, pH 8.5. DNA yield and degradation varied between samples, but we were 

able to obtain good quality DNA extracts from a total of 876 individuals (at least 50 

individuals from each population sample).  

We measured DNA concentrations with a Quant-iT high sensitivity assay (Invitrogen) and 

prepared a separate barcoded library for each individual with Illumina’s Nextera kit according 

to the protocol developed by Kryazhimskiy et al. (2014) (slightly modified by Baym et al. 

2015). Briefly, the tagmentation reaction, which simultaneously fragments the DNA and 

incorporates partial adapters, was carried out in a 2.5 μl volume with 1.6 – 7.9 ng of input 

DNA for each library (this is 1/20 of the reaction volume and DNA input suggested by the 

manufacturer). We then used a two-step PCR procedure with a total of 12 cycles (8+4) to 

add the remaining Illumina adapter sequence with dual index barcodes and amplify the 

libraries. The PCR was conducted with the KAPA Library Amplification Kit and the Illumina 

Nextera index kit with primers N501-N508 + S511 and N701-N712 + N714. As a final step, 

we purified and size-selected the amplification products with Agencourt AMPure XP beads 

and quantified the concentration of the final libraries with the Invitrogen Quant-iT high 

sensitivity assay (see Table S1 for reagent catalogue numbers). We also examined the 

fragment size distribution of multiple libraries from each plate on an Agilent BioAnalyzer 

instrument. Similar to what was shown in the original implementation by Baym et al. (2015), 

the entire library preparation protocol can be completed for 96 samples in less than five 

hours for about 6.50 USD per sample (Table S1), reducing the cost more than 10-fold 

compared to the regular protocol for Illumina’s Nextera kit. 
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In addition to slightly increasing the amount of input DNA for some samples, our only 

modifications to the Kryazhimskiy et al. (2014) protocol was to extend the elongation step to 

3 minutes in the initial PCR and to 2 minutes in the reconditioning PCR (to promote 

amplification of longer fragments) and to change the size selectivity in the final library 

purification step. We made these changes because the majority of fragments in our first 

batch of 76 libraries prepared with the original protocol were shorter than the combined 

length of the paired reads and the adapter sequence (2x125 bp read length + 138 bp 

adapter sequence = 388 bp, see results). By using a 0.6:1 AMPure XP beads to library ratio 

(rather than the 1:1 ratio used in the original protocol), we increased average fragment 

lengths by almost 100 bp. 

We combined equimolar amounts of 56-76 libraries into separate pools for sequencing in 

13.5 lanes of paired-end 125bp reads on an Illumina HiSeq 2000 (v4 chemistry) at the 

University of Utah’s Bioinformatics Core Facility. To even out the data yield among samples, 

we re-pooled libraries that initially had obtained the lowest read output for supplementary 

sequencing in 4.5 additional HiSeq lanes.  

To assess the effect of our preparation method on library bias and complexity, we compared 

our results to two libraries that we had previously prepared with Illumina’s TruSeq DNA 

PCR-Free Sample Preparation Kit. Each of these libraries were prepared according to the 

manufacturer’s instructions for the 550bp insert size workflow (except using a Branson 

Sonifier Cell Disruptor 200 for fragmentation instead of a Covaris instrument) with a total of 2 

μg input DNA pooled in equimolar amounts from 50 of the same silverside individuals 

included in the low-coverage set. The two pooled PCR-free libraries were sequenced in 1.5 

lanes of paired-end 125bp reads on an Illumina HiSeq instrument. 
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Data filtering 

Prior to any downstream analysis, we filtered the raw reads to remove potential artifacts and 

low quality data. We first removed exact duplicate read pairs (likely caused by PCR 

amplification) with the program Fastuniq v1.1 (Xu et al. 2012), and then used Trimmomatic 

v0.32 (Bolger et al. 2014) run in both palindrome and simple mode to trim off adapter 

sequence. We also used the Trimmomatic sliding window approach to trim off the rest of the 

read if the average sequence quality over any four bases fell below 15. We used the 

program FLASH v. 1.2.9 (Magoč & Salzberg 2011) to merge overlapping paired-end reads 

into single consensus reads and removed sequence that mapped to potential contaminant 

sources including human, bacterial and viral genomes (between 0.4 and 1.4% of reads per 

library, Supplementary note 1).  

 

Mapping 

Through a benchmarking test with the program Teaser (Smolka 2015), we identified Bowtie2 

v2.2.3 (Langmead & Salzberg 2012) in preset mode --very-sensitive-local as one of the best-

performing mappers for our dataset (in a comparison of five commonly used mappers). We 

therefore used this program and preset mode to map all the genomic reads to the reference 

transcriptome. We used samtools v1.2 (Li et al. 2009) to filter the alignment files, retaining 

both unpaired, orphaned, and concordantly paired reads with a mapping quality > 20 but 

discarding discordantly mapped pairs. The inferred fragment lengths (based on mapping 

position) revealed a residual presence of overlapping read ends not merged by FLASH for 4-

16% of the mapped pairs. To avoid double-counting the sequencing support during SNP 

calling, we used the clipOverlap program in the bamUtil package v1.0.14 (Breese & Liu 

2013) to soft clip overlapping read ends (maintaining only the read with the highest quality 

score in overlapping regions). We removed duplicate reads with the MarkDuplicates module 

of Picard Tools v1.139 (http://broadinstitute.github.io/picard/) and summarized the coverage 
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and mapping depth across the reference transcriptome for each individual with the 

BEDTools coverageBed program v2.19.1 (Quinlan & Hall 2010) and the samtools mpileup 

module (Li et al. 2009). The outputs from coverageBed and mpileup were processed with 

custom scripts to compute average mapping depths after excluding positions with >4x the 

mean mapping depth (likely repetitive sequence). We estimated the genome size based on 

the relationship between the observed mapping depth and the amount of quality-filtered 

sequence for each sample. The extent of GC-bias was evaluated by computing the average 

depth of coverage for non-overlapping 200 bp windows along the entire transcriptome with a 

script by R.V. Panday (available at http://www.popoolation.at/mauritiana_genome/). We 

compared patterns between the merged read set from 50 Nextera-style libraries and the 

pooled PCR-free libraries, both downsampled to 50 million mapped reads. 

 

SNP calling and posterior genotype probabilities 

Prior to calling variants, we realigned reads around indels with the GATK IndelRealigner 

(McKenna et al. 2010). We then used the program ANGSD v0.910 (Korneliussen et al. 

2014) to call single nucleotide polymorphisms (SNPs) at sites with a probability <1e-6 of 

being monomorphic based on the mapped reads for all 876 individuals (excluding sites with 

a total read depth <300 and >3028 (mean depth +2 standard deviations) and bases with a 

quality score <20). We also used ANGSD to estimate allele frequencies in each population 

sample of 50 individuals and computed posterior genotype probabilities, which incorporate 

the uncertainty about true genotypes for each individual at each SNP. The posterior 

genotype probabilities for all SNPs with a global minor allele frequency >1% were used to 

estimate the covariance matrix among individuals with ngsTools (Fumagalli et al. 2014), and 

we used the base package in R for eigen-decomposition to summarize the covariance 

patterns with a principle components analysis. 
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Mitochondrial genome reconstruction 

We mapped the genomic reads to the mitochondrial genome sequence for M. menidia 

(Genbank Acc. GI: 197311199; Setiamarga et al. 2008) with the same procedure and 

filtering criteria as described above. We then used freebayes v0.9.21-5-g018c661 (Garrison 

& Marth 2012) in haploid mode to call variants for each sample, requiring at least three 

observations of alternative alleles and retaining only non-reference genotype calls with 

phred-scale quality >20. Based on the haploid genotype calls, we extracted a consensus 

mitochondrial genome sequence for each individual with the vcf2fasta tools from the vcflib 

package (https://github.com/ekg/vcflib). We generated a multiple sequence alignment of 

these sequences with Clustal Omega (Sievers et al. 2011), and used the R-package 

haplotypes (Aktas 2015) to compute a pairwise mismatch distribution and quantify the 

number of unique mitochondrial haplotypes observed within each population. To illustrate 

the applicability to species without a pre-existing mitochondrial genome reference, we in 

parallel de novo assembled the mitochondrial genome for our 200 samples collected along 

the geographical cline with the baiting and iterative mapping approach implemented in the 

program MITObim v.1.8 (Hahn et al. 2013). We used only the commonly available COI 

barcoding gene sequence as a starting seed and used both the “denovo” and the “mapping” 

mode to iteratively extend to the full sequence based on matching reads from the quality-

filtered read pool from each individual. 

 

RESULTS 

Reference transcriptome 

The final nuclear transcriptome assembly contained 20,998 contigs with a minimum length of 

200 bp, an N50 of 3,347 bp, and a combined length of 53.3 Mb. The average GC-content 

was 49.7% (compared to ~40% across all the genomic reads). Overall, 74-78% of RNA-seq 

reads mapped uniquely onto the assembly and only 1-2% of reads mapped to multiple 
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locations, indicating a low level of redundancy. The contig set shows significant BLASTx hits 

to 84% of gene models in the related platyfish genome. For 74% of these genes, the top 

HSP covers >90% of the total length of the reference protein, indicating complete or nearly 

complete transcripts.  

 

Genomic sequence data quality 

The first round of sequencing yielded 0.17 – 4.16 Gb of raw sequence per library (757 Gb in 

total). Our follow-up sequencing added another 229 Gb, resulting in an average of 1.13 Gb 

raw sequence data (~9 million read pairs) per individual (see Supplementary Note 2 and Fig. 

S1 for details on how we evened out the sequencing effort across individuals). Quality 

trimming removed on average only 3% of bases, except from one lane with notably lower 

quality scores, which had an average of >9% of bases removed in the filtering.  

The two size-selection protocols had substantial impact on the sequence usability. With the 

original protocol (Kryazhimskiy et al. 2014), the two ends overlapped for 74% of read pairs, 

with an average overlap of 58 bp, making 22% of the read data redundant after merging. 

The short length of our inserts also caused adapter read-through in the shortest constructs, 

so another 8% of the raw data were adapter sequence. The modified protocol substantially 

increased the mean insert length in our libraries, resulting in a much lower proportion of 

paired reads overlapping (11-64%, average of 25.4%). This reduced overlap redundancy to 

6.3% and the level of discarded adapter sequence to 1.9% (Supplementary Fig. S2), so that 

on average 87% of bases were retained for mapping after all quality filtering. One aspect of 

our results that bodes well for future use of this approach is that the amount of input DNA did 

not appear to systematically affect the mean insert length or the total amount of quality-

filtered data generated per library (Supplementary Fig. S3-5)  
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Mapping  

On average, 14% of the reads mapped uniquely to the reference transcriptome with a 

mapping quality >20. Almost half of these (46%) were mapped in concordant pairs (both 

ends mapped to the same contig in the expected orientation and with an inferred insert 

length <1500bp). Less than 3% of the mapped reads were in discordant pairs with the two 

ends mapped to different contigs, and these were filtered out. Because we mapped genomic 

reads to a transcriptome reference that spans intron-exon boundaries, ~37% of all the 

mapped reads were orphans from pairs where only one end mapped (the other end likely 

originated from intronic or intergenic sequence that is ignored for the present analysis). 

Mapping depth tended to only decrease moderately around intron-exon boundaries, 

however, because the applied mapping algorithm allows local mapping of reads that only 

match the reference for part of their length (Fig. 2). Indeed, distinct break positions where a 

large number of reads either start or end their local alignment can be observed in the 

alignment files (Fig, 2). As also highlighted by Montes et al. 2013, localizing these break 

positions represents a novel way to infer the location of exon-intron boundaries within the 

transcriptome reference. 

 

Library complexity, mapping depth and GC-bias 

Ideal sequencing libraries should contain a large number of unique DNA fragments so that 

most molecules are sequenced only once, and these fragments should be randomly 

sampled from the genome for homogenous sequencing coverage. The MarkDuplicates 

algorithm flagged 3-14% (on average 6%) of our mapped reads as potential duplicates 

based on identical mapping positions. However, the duplication rates estimated for single-

end reads (for which only the mapping position of one end of a fragment is known) were up 

to 28x greater than the duplication rates estimated for paired reads (for which the mapping 

position of both ends of a fragment can be taken into account, Fig. 3), indicating that the 
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overall estimates are inflated by false positives (see Supplementary Note 3 and Fig. S6). As 

expected, the total amount of sequence generated for each library correlated strongly with 

the duplication rate estimates (Fig. 3). Yet, even in the libraries for which we had 5x genome 

coverage, the highest paired-read duplication rate estimated was only 2.4% (the inflated 

estimate including single-end reads was 12%), indicating a high level of complexity and very 

limited PCR duplication in the libraries.  

About 1.6% of positions in the transcriptome sequence showed excessive mapping depth 

(greater than 4 times the mean depth) - likely because of repetitive sequence or assembly 

errors - and these positions were excluded from all further analysis. For the rest of the 

transcriptome, the average mapping depth was 1.3x per individual (Supplementary Fig. S7). 

Due to the stochastic sampling process involved in sequencing, the reads did not cover the 

entire reference sequence for each individual. However, within individuals, an average of 

66% of positions in the transcriptome were covered by at least one read. In samples with 

greater than 3.5x coverage, >90% of positions were covered (Fig. 4). The number of years 

(8-17) a sample had been stored frozen did not seem to affect the average mapping depth 

or transcriptome coverage, indicating robustness to variable levels of degradation. Across 

samples, we observed the highest depth of coverage in regions with GC-content between 30 

and 50% and reduced coverage in regions with extreme GC-content. Because an almost 

equally strong bias was seen for the PCR-free libraries (Fig. 5b), a large part of this bias 

most likely arose during sequencing and not in library preparation. Within the range of GC-

content observed across 99% of the transcriptome (26.5-73.6% GC, Fig 5a-b), the average 

coverage only varied two-fold. The fraction of the reference not covered by any reads was 

identical for the PCR-free and the Nextera library sets (2.1%), and although the slightly 

higher GC-bias resulted in a slightly less even distribution of reads than for the PCR-free 

libraries (Fig. 5c), we consistently saw an average coverage >60x across the population 

groups of 50 individuals with >82% of bases covered by reads from at least 25 of the 50 

different individuals (Supplementary Fig. S8). 
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Genome size estimation and per sample sequencing costs 

We did not sequence any samples deeply enough to robustly estimate the silverside 

genome size with k-mer based approaches (Marçais & Kingsford 2011; Chikhi & Medvedev 

2014). However, comparisons of the amount of cleaned sequence per individual and the 

average mapping depth achieved across the reference transcriptome (excluding highly 

repetitive sites) showed that we needed about 730 Mb of cleaned sequence reads to get an 

average of 1x mapping depth, indicating that this is the approximate size of the silverside 

genome (similar to genome sizes reported for related species). Given that our conservative 

quality filtering discarded about 13% of the raw data, we would need about 840 Mb of raw 

reads per individual to achieve 1x genome coverage, which means that 65 individuals with a 

silverside-sized genome can be pooled in a single Illumina lane (assuming 54Gb of raw 

sequence output, as we saw on average). This brings the current cost of sequencing to 

~40USD / individual (for 1x genome coverage; see Table S2 for a comparison of sequencing 

costs for organisms with different genome sizes). 

 

SNP calling and posterior genotype probabilities 

ANGSD detected a total of 2,504,335 SNPs with a minor allele frequency >1% across all 

samples. The population-specific allele frequencies for each of these SNPs estimated from 

the genotype likelihoods can be used for a suite of downstream applications including scans 

for signatures of selection and reconstruction of demographic history (Therkildsen et al., in 

prep.). Despite the low certainty about individual genotypes for each individual SNP (given 

the only 1-2x coverage), the PCA that integrated genotype probability information across the 

entire exome clearly grouped individuals into distinct clusters that largely corresponded to 

geographic origin (Fig. 6). The first principle component separates the geographical samples 

along a North-South continuum, while PC 2 shows the distinctness of silversides from the 

Gulf of St. Lawrence, as has been reported from D-loop sequence data (Mach et al. 2010). 
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In addition, the PCA also reveals that a few individuals cluster with a different group than 

most other individuals collected at the same locations, indicating that they may be migrants. 

The effects of such divergent individuals would be impossible to quantify in pooled 

sequencing designs.  

 

Mitochondrial genome reconstruction 

On average 0.2% of the quality-filtered reads mapped to the mitochondrial genome with a 

mapping quality >20, resulting in an average mapping depth of 79x along the mitochondrial 

genome for each individual (range 2x-740x). The ratio of mitochondrial to transcriptome 

mapping depths depended strongly on the amount of time a sample had been stored frozen 

prior to sequencing (Fig. 7). Samples that had been stored for 17 years showed only about 6 

times greater mapping depth for the mitochondrial genome compared to the transcriptome, 

while the enrichment was on average 99 times for samples stored for only 8 years. This 

large and consistent difference cannot be attributed to library preparation or sequencing lane 

effects because samples had been randomized between batches. As mentioned above, we 

also did not see a similar effect of sample age on the mapping rate for the transcriptome. 

These results therefore indicate differential rates of degradation of mitochondrial and nuclear 

DNA in storage. 

Among our samples, 784 (98%) of the samples stored for fewer than 17 years had a 

mapping depth of at least 5x throughout >95% of positions in the mitochondrial genome, 

allowing high-confidence haploid genotype calls. The multiple alignment of all consensus 

sequences revealed that 1,287 of the 16,458 positions in the mitochondrial genome were 

variable (651 variants were singletons, i.e. the alternative allele was only observed in a 

single individual). All individuals differed by at least four positions from the reference 

sequence, but many individuals had completely identical sequences, resulting in only 272 
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unique haplotypes among the samples. The unique sequences differed by on average 40.7 

positions providing strong resolution for tracking of individual lineages.  

Among the F1 offspring from wild parents, 89% of haplotypes were unique. By contrast, only 

13% of haplotypes were unique in F6 samples after five generations of rearing in the lab, 

and 7% were unique in samples collected after 10 generations of lab rearing, illustrating 

strong reduction of maternal lineages and potential inbreeding.  

For the field-collected individuals from the four geographic locations, pairwise mismatch 

distributions show that the southernmost samples have the most divergent mitochondrial 

genomes (largest number of polymorphisms in pairwise comparisons), while the 

mitochondrial genomes sampled at northern locations differ at fewer sites (Fig. 8). This 

pattern is consistent with northward migration from southern refugia since the last glaciation, 

as has been previously suggested for this species based on D-loop sequences (Mach et al. 

2010). The full-length mitochondrial genomes provide a much richer data set for detailed 

reconstruction of demographic history of this species. 

We also tested whether we could reconstruct mitochondrial genomes without a full reference 

sequence. Using only COI as a seed and MITObim’s default parameters, we were able to de 

novo assemble the full mitochondrial genome in a single contig for 166 of the 200 

geographical samples over 14-157 iterations. Parameter optimization or using a 

mitochondrial genome sequence from a related species could probably improve the success 

rate substantially, showing that the low-coverage data make it possible to recover full 

mitochondrial genomes even without a pre-assembled reference. 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

DISCUSSION 

This study demonstrates that whole genome sequencing of hundreds of individuals now 

represents a practical approach for obtaining population genomic data from model and non-

model species alike. We illustrate an efficient workflow for preparing high-quality individually 

barcoded libraries that enable more robust and versatile data analysis than pooled sample 

sequencing, and we show how ‘in silico’ capture of genomic reads can be used to generate 

exome-wide polymorphism data for organisms without a reference genome sequence. With 

a total cost per sample of less than 50 USD (including both library preparation and 1x 

genome sequencing), our approach offers a viable alternative to RAD-seq, physical target 

enrichment, and Pool-seq for many studies.  

 

High-quality libraries despite low DNA input amounts  

The Nextera-based libraries showed only slightly greater GC-bias and a slightly less even 

genomic distribution of reads than previous libraries generated from a subset of the same 

samples with a PCR-free method, indicating that the cost reduction and simplified workflow 

do not substantially compromise library quality. We also saw that DNA input amounts as low 

as 2 ng did not significantly reduce the diversity of sequenced molecules in libraries 

prepared from the ~730 Mb silverside genome, as we consistently saw duplication rates 

<2.4%, even in libraries sequenced to >4x genome coverage. The ability to generate high-

complexity libraries with ng amounts of input DNA makes whole genome sequencing 

available for a broad set of samples that may not yield sufficient DNA for alternative methods 

that require as much as 1-2 μg of DNA.  
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Robustness to DNA degradation 

The efficiency with which DNA is incorporated into the library probably depends to some 

degree on DNA quality. For nuclear DNA, we saw no consistent differences in the quality of 

libraries generated with samples stored in a minus 20°C freezer for 8 to 17 years. We did, 

however, only use DNA extracts that contained high molecular weight DNA, and used a pre-

cleaning procedure to remove fragments shorter than 1000 bp prior to DNA quantification. 

The notable decrease in enrichment for mitochondrial DNA with sample age suggests faster 

decay of mitochondrial vs. nuclear DNA under our sample storage conditions (whole fish 

frozen at -20°C). This faster decay is surprising considering that mitochondrial fragments are 

often the only recoverable DNA from ancient samples and have been reported to decay at 

slower rates than nuclear DNA over long time scales (hundreds to thousands of years; 

Schwarz et al. 2009; Allentoft et al. 2012). Several other studies have reported faster decay 

of mitochondrial than nuclear DNA in experimental comparisons, however, indicating that 

different processes may affect short- and long-term DNA preservation (Foran 2006; Higgins 

et al. 2015). 

 

Efficient workflow with easy tuning for different sequencing applications 

The entire library preparation protocol can be completed for 96 samples in less than 5 hours 

total time, and without expensive specialized laboratory equipment. We found that simply 

altering the ratio of AMPure XP beads to library volume caused consistent shifts in the size 

distribution of fragments in the final library, thereby allowing flexible tuning to different 

sequencing applications. To minimize redundancy from sequence overlap and adapter read-

through, library fragments should be longer than the total read length (the sum of both ends 

for paired reads) plus the adapters. However, fragments larger than 600 bp tend to cluster 

much less efficiently than fragments in the 250-500 bp range on Illumina flow cells (Bronner 

et al. 2013). This resulted in lower sequence yields for libraries with longer fragments, so the 
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optimal balance between data loss and data yield was reached for libraries with inserts 

between 250 and 350 bp (Supplementary Fig. S5).  

Contrary to several previous studies (Adey et al. 2010; Baym et al. 2015) and Illumina’s 

Nextera Technical Note, we did not find that variation in the amount of input DNA (in the 

range 1.6-7.9 ng) predictably affected the fragment length distribution of the libraries. A 

similar result has been reported in another study optimizing the Nextera protocol for a range 

of different organisms (Lamble et al. 2013), suggesting that exact normalization prior to 

library preparation - currently the most time-consuming part of the protocol - may not always 

be necessary and can perhaps be replaced with a bead normalization (Lamble et al. 2013). 

However, since the effect of input concentration is likely to vary between organisms 

(depending e.g. on genome composition, GC-content, and sample quality), we echo the 

recommendation of Baym et al. (2015) to always calibrate input amounts and size selection 

conditions on dilution series of a few representative samples before scaling up library 

preparation for novel DNA sources.  

 

Individual barcoding vs. pooled sequencing 

Our study shows that the price difference between pooling unlabeled DNA into a single 

library and preparing separate barcoded libraries for each individual is diminishing. Our 

library preparations cost ~6.5 USD per sample, so the total reagent cost for individual 

barcoding of 50 individuals is about ~325 USD, a modest portion of an overall NGS 

sequencing budget. Considering furthermore that we can prepare 96 individual libraries in 

the same amount of time it takes to make a pooled library, we believe that our approach is 

practical for broad adoption. The slightly higher cost compared to Pool-seq should for many 

studies be well worth the much increased versatility of individual-level low-coverage data 

compared to an anonymous pool of sequences.  
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A key advantage of individually barcoded data is the ability to account for uneven 

sequencing depth among individuals. This is particularly important when degradation levels 

vary between samples, as was the case for our silversides. Perhaps more important, 

however, is the suite of additional individual-level analysis made possible. Novel tools that 

integrate signals from low-confidence genotype likelihoods across thousands of nuclear loci 

now allow accurate inference about relatedness and genetic similarities among individuals 

even at 1-2x coverage (Fumagalli 2013; Gompert et al. 2014; Korneliussen et al. 2014; 

2015; Snyder-Mackler et al. 2016; Vieira et al. 2015). As illustrated here with the PCA, this 

individual-level analysis can help detect cryptic differentiation within a population sample. 

When undetected in Pool-seq data, such heterogeneity among individuals can dramatically 

bias population allele frequency estimates. Estimation of individual admixture proportions 

also make certain types of individual clustering possible with low-coverage data (Skotte et al. 

2013), so that analyses of population structure are not limited to pre-defined sample 

groupings. In a similar vein, individually barcoded individuals are not limited to a single pool. 

Samples can be re-grouped in many different configurations, for example according to 

different phenotypic traits for association studies (Kim et al. 2011; Skotte et al. 2012). This 

allows for flexible analysis of both allele frequencies and patterns of linkage disequilibrium 

across the genome (Li 2011; Maruki and Lynch 2015). We foresee a rapid development in 

tools for analyzing sequencing data in a probabilistic framework without calling genotypes 

over the next years, which should enable even more powerful analysis from low-coverage 

sequencing.  

Another “added bonus” of barcoding individuals is the high-confidence full mitochondrial 

genome sequence we were able to recover for each individual, allowing powerful inference 

about maternal ancestry and evolutionary history. As utilized in genome skimming projects 

(Straub et al. 2012; Dodsworth 2015), high copy numbers per cell typically ensures deep 

sequencing of the mitochondrial genome even when the nuclear genome-wide coverage is 

shallow. The average of 79x coverage we observed across the mitochondrial genome for 
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each individual allowed for both de novo assembly of the full mitochondrial sequence and 

polymorphism detection based on mapping to a pre-existing reference. The resulting full-

length mitochondrial genome sequences, representing non-recombining, maternally 

inherited markers, provide valuable complementary information to nuclear data at a 

resolution not achievable with earlier techniques. A previous study that examined a 340 bp 

fragment of the D-loop in 1,029 silversides found the same haplotype in 66% of their 

samples and most other haplotypes differing only by a single substitution (Mach et al. 2010). 

The full mitochondrial genomes of our 200 individuals collected over the same geographical 

cline differed on average by >40 nucleotides (Fig. 8). At a divergence rate of 2% per million 

years, two 16,500 bp mitochondrial genomes will differ by 1 change per 3000 years. As a 

result, full mtDNA data sets have the possibility of capturing demographic events that have 

occurred during the last several glacial cycles. Such changes may be important in temperate 

species affected by swings in latitudinal range. In our data set, there is a strong peak in 

northern populations at an average of 6 bp differences, representing perhaps invasion of 

these northern populations over the last 18,000 years as glaciers receded. Peaks in 

southern populations at 18, 32 and 66 differences perhaps suggest lineage divergence that 

occurred 50,000, 90,000 and 200,000 years ago. More detailed recent historical 

demography might be mined from these kinds of data sets.  

 

Expanding the tool box for both model and non-model species genomics 

As discussed above, dividing a given sequencing effort over individually barcoded samples 

should provide substantially more robust and versatile data than sequencing a pooled 

sample to the same combined depth. Our cheap and efficient library preparation method 

should therefore be useful for many population whole genome resequencing studies of 

species with full reference genome sequences.  
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Our “brute force” approach to obtaining exome and mitochondrial sequence for a species 

without a reference genome may seem inefficient since we only end up using ~8% of the 

data. However, the cost of non-target sequencing must be weighed against the cost and 

effort associated with isolating the target parts of the genome prior to sequencing. Although 

several workflows have been developed for designing capture probes for non-model species 

(reviewed by Gasc et al. 2016 and Jones and Good 2016) and methodological 

improvements along with new commercial providers have made capture technology more 

affordable, the cost of custom-synthesizing probes the entire transcriptome for hundreds of 

individuals is still relatively high. Although it is currently somewhat more expensive to 

capture ‘in silico’ rather than with physical baits for many applications, the benefits include a 

much simpler and faster high-throughput sample preparation method that introduces less 

bias, and, importantly, the availability of all the non-target genomic reads for later analysis. 

Because our approach is based on shotgun genome sequencing, the sequencing cost per 

sample will scale with the genome size of the study organism, so the relative advantages of 

‘in silico’ vs. physical capture will depend strongly on the genome-size of the organism under 

study (see Supplementary Table S2 for an comparison of the per individual cost of our 

approach for organisms with different genome sizes). However, as sequencing costs further 

decrease, the set of organisms for which our approach is cost-effective will expand.  

For some time to come, our method will be more expensive than RAD-seq for many studies. 

However, the ability to focus on specific parts of the genome adds a valuable functional 

dimension to data sets. Our approach also does not suffer from the technical artifacts 

associated with polymorphisms in restriction cut sites that in RAD-seq can reduce overlap in 

the loci sequenced in different individuals and cause allele dropout that may complicate and 

bias inferences, especially when the genetic diversity within species is high (Gautier et al. 

2012; Arnold et al. 2013). We therefore believe that ‘in silico’ capture adds a new promising 

tool to the non-model species population genomics toolbox. We have shown here for the 

silverside how it can be incorporated into a workflow for species with no prior genomic 
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resources and can powerfully address both individual-level and population-level questions. 

For applications where high-confidence individual genotypes are required, however, other 

methods will be more appropriate, so method selection should always depend on particular 

study objectives. 

 

Future potential 

We here demonstrate a workflow focused on ‘in silico’ exome capture with a de novo 

assembled transcriptome reference as a tractable and straightforward starting point for 

population genomic analysis. Since the raw data cover the whole genome, however, many 

other regions of interest can be targeted (e.g. microRNAs, transcription factors or 

transposable elements). An alternative strategy could also be to de novo assemble the 

genomic reads to the extent possible with only low-coverage sequencing of polymorphic 

individuals, potentially using the transcriptome reference contigs as seeds for assembling 

genomic regions flanking the exons (Lamichhaney et al. 2012; Ruby et al. 2013). The 

resulting longer contigs can then be used as a more extensive reference for mapping, 

covering a larger part of the genome (but also complicating the analysis pipeline). 

Reference-free variant calling methods also offer promising prospects (Iqbal et al. 2012; 

Leggett & MacLean 2014; Uricaru et al. 2015), and with the increasing availability of long 

sequence reads and methods for improving assembly contiguity, it will become easier and 

faster to develop full genome reference sequences for new species, making low-coverage 

whole genome re-sequencing data even more powerful. Our exome-focused approach 

allows a short-cut to start exploring genomic patterns in versatile sequence data that will 

have a long-lasting value and enduring applicability as reference sequences improve. 
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